
IJIREEICE IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 4, April 2017

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2017.5431 167

An Intelligent Distributed Embedded System

Architecture for Real-Time traffic control system

Seketa Olika Abdena
1
, Dr Vasu Pinnti

2

Dean, College of Engineering, Wolaita Sodo University, Sodo, Ethiopia1

Associate Professor, ECE Dept, College of Engineering, Wolaita Sodo University, Sodo, Ethiopia2

Abstract: Recent advances in distributed computing, embedded systems, communication, and sensor technology are

pushing the development of many new applications. This trend is especially evident in pervasive Real-time

functionality in life critical situations. Current high-performance embedded cameras combine video sensing, video

processing, and communication within a single device, distributed data processing with load balancing provides local

safety measures if system fails and data replication across several physical systems provides Capability to continue

work even if several systems fail and also resume with previous settings and data on restart and Watchdog

functionality. In this paper we focused these issues and developed intelligent embedded system modules which are
distributed, well organized and modeled into an intelligent system architecture to control real-time traffic system, in

this each module requests data from system as input, processes it independently and provides data as output, this offers

data gathering from sensors – Actuating external actuators – Data processing – Service (logging etc.),Vehicle detection

in video using Number plate location in video ,Car detection using microphone arrays, magnetic sensors and other

sensors and Merging data for complex vehicle detection, calling emergency services, Controlling traffic lights.

Keywords: embedded cameras, data replication, watch dog, vehicle detection, sensors, actuators.

I. INTRODUCTION

Scientific breakthroughs enable new technology whereas at the same time, technology makes it into transformative

applications (see, for example, the Internet and wireless communication systems). It is evident that the advancement of
smart devices with impressive sensing, computing and control capabilities makes it possible for our cities,

transportation systems, factories and living environments to become more intelligent, energy-efficient, safe and secure.

We are now witnessing an explosion in networked systems: everything is connected and massive amounts of devices

are required to be coordinated. However, the overall system is distributed and a service should be delivered

cooperatively, rather than by a unique provider that knows and owns all data. Many researchers and practitioners are

interested in understanding the complexity and possible solution approaches, since distributed systems apply to

different areas and applications and are anticipated to play a central role in the near future.

In applications that can be characterized as distributed systems, dynamical systems are controlled or communicate and

interact with other dynamical systems via a network of sensors and actuators transmitting and receiving information

over a digital communication network.

Figure 1: distributed system environment

IJIREEICE IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 4, April 2017

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2017.5431 168

Real communication channels suffer from various problems (such as limited capacity, bit errors, erasures and random

delays) that can affect the stability and/or performance of the whole system. Given the multidisciplinary nature of
distributed systems, many studies are necessarily restricted to contributions that solve problems partially, ignoring

important aspects of such systems due to modular approaches to the problem. In order to be able to deal with

distributed systems, we need to better understand information, and the interplay between information and decisions.

However, communication and control/decision making have traditionally been treated separately whereas recent

emerging applications necessitate a more holistic approach, since communication and control are no longer

independent.

The main objective of this line or research is to develop the framework on how to treat the interplay between

communications and control to solve distributed control and optimization problems arising in distributed embedded

systems and in real-time traffic control system.

Smart cameras, one example of this innovation, are equipped with a high-performance onboard computing and
communication infrastructure, combining video sensing, processing, and communications in a single embedded device.

By providing access to many views through cooperation among individual cameras, networks of embedded cameras

can potentially support more complex and challenging applications—including smart rooms, surveillance, tracking, and

motion analysis— than a single camera. From an external perspective, users understand a system as a collection of

components that correspond to system behaviors to fulfill requirements. As such, components are well understood

abstractions that encapsulate domain knowledge and denote a system’s behavioral units.

We designed our smart camera as a fully embedded system, focusing on power consumption, QoS management, and

limited resources. The camera is a scalable, embedded, high-performance, multiprocessor platform consisting of a

network processor and a variable number of digital signal processors (DSPs). Using the imple mented software

framework, our embedded cameras offer system-level services such as dynamic load distribution and task
reconfiguration. In addition, we combined several smart cameras to form a distributed embedded surveillance system

that supports cooperation and communication among cameras. Although smart cameras have various applications we

focus on traffic surveillance, which imposes demanding video-processing and compression-algorithm requirements on

the camera’s hardware and software. The ―From Analog to Digital Smart Cameras‖ provides a discussion of the

evolution of smart camera surveillance systems.

To meet the requirements of an innovative traffic-surveillance system—that is, the ability to autonomously monitor the

traffic along a highway section, computing traffic statistics, delivering a compressed live video to the monitoring

station, and performing high-level video analysis such as detecting a wrong-way driver or an accident— the distributed

surveillance architecture must be scalable and flexible.

II. HARDWARE ARCHITECTURE

Our work is centered on the notion of a feature: Smart cameras are a core component of future traffic- surveillance

systems. High-level computing and communication capabilities in the smart cameras’ embedded platform increase

surveillance system functionality, flexibility, and scalability. For example, basic video compression (MPEG-4

advanced simple profile) and video processing (such as stationary vehicle detection) require an overall computation

performance of about 10 billion instructions per second (GIPS) and a transfer rate of about 1 megabyte per second

(Mbps). Additional onboard video analysis increases the computation and communication requirements. We chose a

commercial off-the-shelf software/ hardware architecture to support fast prototype development and achieve flexibility

and performance at a reasonable price.

Figure 2 depicts the smart camera’s three main parts: the sensing unit, processing unit, and communication unit.

A highly dynamic, monochrome complementary metal-oxide semiconductor (CMOS) image sensor is the sensing

unit’s heart. The sensing unit delivers images with VGA resolution at up to 30 frames per second, transferring the

captured images via a first-in, first-out (FIFO) memory to the processing unit.

The processing unit consists of DSPs, which offer a good compromise between performance, power consumption, and

flexibility. Up to 10 Texas Instruments TMS320C64x DSPs can deliver an aggregate performance of up to 80 GIPS

while keeping the power consumption low. By using an adequate number of DSPs, we adapt this scalable architecture’s

computing performance to the requirements of the real-time video analysis and compression tasks targeted for the smart

camera.

IJIREEICE IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 4, April 2017

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2017.5431 169

Figure 2: Embedded system hardware architecture

Local peripheral components interconnect (PCI) bus couples the DSPs and connect them to the network processor

(Intel XScale IXP425). The network processor establishes the connection between the processing and communication

units and controls internal and external communication. We chose the XScale processor because of its communication

capabilities, low power consumption, and integration of various interfaces. Internal communication between the DSPs

or between the DSPs and the network processor occurs through the PCI bus. The communication unit currently
supports two interfaces for IP-based external communication: wired Ethernet and wireless Global System for Mobile

Communications/ general packet radio service (GSM/GPRS).

III. SOFTWARE ARCHITECHURE

We designed the smart camera’s software architecture for flexibility and re-configurability. It consists of several layers,

which we group into two frameworks:

• The DSP framework, running on every DSP in the system,

• The SmartCam framework, running on the network processor.

We based the architecture on the abstraction that the application logic runs on the network processor and loads and

unloads the actual analysis algorithms onto the DSPs as needed. Figure 3 is an overview of our distributed embedded
software architecture.

Figure 3: distributed embedded software architecture.

DSP framework the DSP framework’s main purposes are provide an abstraction of the hardware and communication

channels, support dynamic loading and unloading of application tasks, and manage the DSP’s on-chip and off-chip

IJIREEICE IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 4, April 2017

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2017.5431 170

resources. Of course, only the DSP connected to the image sensor needs the sensor interface module. Algorithms on

different DSPs use the service-management facilities to dynamically establish connections to each other. This is
important because the dynamic loader module can load and unload all algorithms at runtime. Actually, only the shaded

modules on the left in the DSP framework in Figure 3 must be available at startup. The system can dynamically load all

other components at runtime. We built the DSP framework on Texas Instruments’ DSP/BIOS operating system.

SmartCam framework. The SmartCam framework, illustrated in Figure 3, serves two main purposes:

• It provides an abstraction of the DSPs to ensure the application layer’s platform independence.

• The application layer uses the provided communication methods—that is, internal messaging to the DSPs and

external IP-based communication—to exchange information or offer data-relay services for DSP algorithms.

Modules of this part of the software architecture supports application development by providing high-level interfaces to

DSP algorithms and the DSP framework’s functions. The XScale processor runs standard Linux, easing application

development and providing many modules for seamless internal and external communication on our smart camera. The

only customization of the Linux kernel is the DSP kernel module, which the processor uses to establish the connection
to the DSPs via the PCI bus.

Distributed system architecture

Developers can use our embedded smart cameras to implement a distributed intelligent video-surveillance (IVS) system

consisting of dozens of cameras.

To design a scalable distributed architecture, we partition an IVS into distributed logical groups of typically collocated

smart cameras, or surveillance clusters. It isn’t necessary to assign most traffic-surveillance tasks—such as accident

detection, vehicle classification, and computation of traffic statistics—to a specific camera. Our IVS architecture only

requires an assignment to a specific cluster. The IVS then dynamically and autonomously maps surveillance tasks onto

individual cameras depending on the cameras’ available resources and the system’s current state.

We implement this dynamic reconfiguration of tasks onto cameras using a mobile agent system (MAS) built atop the
SmartCam framework. In our MAS, agents represent surveillance tasks that can migrate dynamically between the

cluster’s cameras. Significant changes in the observed environment or in the available resources trigger a task

migration. A dedicated agent in our MAS uses a complex cost function to compute the optimal assignment of tasks to

cameras.3 QoS is a major concern in a distributed IVS. In video-based surveillance, typical QoS parameters include

frame rate, transfer delay, image resolution, and video-compression rate.4 The surveillance tasks might also offer

several QoS levels. Furthermore, the provided QoS levels can change over time due to user interactions or changes in

the monitored environment. Thus, novel IVS systems must include dedicated QoS management mechanisms.

Power awareness is another important design aspect in distributed IVS systems because they must deliver high-level

QoS while using embedded devices that are partly solar or battery powered. Our smart camera supports combined

power and QoS management (PoQoS)5 for distributed IVS systems. PoQoS dynamically configures the power and QoS

level of the camera’s hardware and software to adapt to user requests and changes in the environment.

Distributed software

We use mobile agents to support the development of our distributed surveillance system, consisting of loosely coupled

smart cameras. Mobile agents are most suitable for this distributed application because we can encapsulate each

surveillance task within a mobile agent, which can then migrate between cameras. An MAS supports autonomous

operation of the surveillance tasks. Moreover, this approach is highly scalable and flexible. In typical MAS, individual

agents migrate between hosts, which execute the surveillance tasks. We’ve thus extended the mobile agent to keep a

DSP binary that can be downloaded from the SmartCam’s network processor to one of the DSPs.

The DSP agents have three parts:

• A module that manages the agent’s integration into its environment,

• A DSP binary representing the agent’s functionality and

• An optional set of intermediate data.
System core services

● Configuration subsystem

● Data storage subsystem

● Inter-core network subsystem

● Watchdog subsystem

● Data replication subsystem

● Data retrieval subsystem

Configuration subsystem that keeps configuration consistent across physical systems and system restarts and also

distributes external configuration changes for the active and further sessions

IJIREEICE IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 4, April 2017

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2017.5431 171

Data storage subsystem stores all relevant tracking data on each physical system separately. Initially modules send

data to local core only and data distribution controlled by data replication Subsystem
Inter-core network subsystem performs message distribution and routing between physical systems, System routing

information and System load information

Watchdog subsystem watches heart-beat signals from all cores and Takes necessary action to restart failed system

parts and/or sends notifications to appropriate personnel

In data replication subsystem all data packets are replicated to at least N physical systems. After receiving data packet

each core determines if it should be stored and/or sent for further replication or dropped completely. Each packet

contains information of cores containing it. Replication targets determined by reported system load If cores containing

some data fail, watchdog initiates additional replication of the involved data

In Data retrieval subsystem, modules request data from local core and Local core determines which of system cores

contains the freshest data of type and source requested and connects requesting module to the appropriate core Either

one packet or data stream can be Requested.

Figure 4: distributed embedded system architecture

IV. PHYSICAL TESTBED IMPLEMENTATION

Physical testbed implementation uses 3 Mini-ITX personal computers (i5, 8GB RAM), 8 Raspberry PI embedded

computers, Wireless router, Sensors (cameras, magnetic sensors, microphone arrays etc.) Traffic actuators (simulated,

because of birocratic reasons) Developing the SmartCam prototype has given us insight that might also be applicable to

other distributed embedded systems. Our experiences show that the keys to successful deployment of smart cameras are

the integration of sensing, computing, and communication in a small, power-aware embedded device; the availability of
high-level image/video processing algorithms or libraries for the embedded target processors (the DSPs); a lightweight

software framework supporting glueless intra- and intercamera communication; and the availability of various system-

level services such as task mapping and QoS adaptation to allow autonomous and dynamic operation of the overall

multicamera system.

Embedded smart cameras could potentially be deployed in applications such as smart environments, intelligent

infrastructures, and pervasive computing. Augmenting the smart cameras with additional sensors could transform them

into a high-performance multisensory system. By combining visual, acoustic, tactile, or location-based information, the

smart cameras become more sensitive and can deliver more accurate results, making them even more widely
applicable.

IJIREEICE IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 4, April 2017

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2017.5431 172

Figure-5: logical view

V. CONCLUSION

The distributed embedded system architecture proposed and implemented in test environment. Redundancy and fault

tolerance allows system to continue working even with several physical systems down, Load distribution allows

additional benefits, such as capability to run identical high intensity data processing modules in parallel on several

systems and Module developers do not have to concern themselves about the distributed system architecture reducing

module development time and complexity. At the moment only simulated data on real physical system, will be tested in
real traffic environments.

ACKNOWLEDGMENTS

We performed this work at the college of Engineering, wolaita sodo University. We acknowledge the support received

from the Electrical and Computer Engineering department, WSU, ETHIOPIA.

REFERENCES

1. Arora, Sanjeev; Barak, Boaz (2009), Computational Complexity A Modern Approach, Cambridge, ISBN 978-0-521-42426-4.

2. Ghosh, Sukumar (2007), Distributed Systems – An Algorithmic Approach, Chapman & Hall/CRC, ISBN 978-1-58488-564-1.

3. W. Wolf, B. Ozer, and T. Lv, ―Smart Cameras as Embedded Systems,‖ Computer, Sept. 2002, pp. 48-53.

4. G.L. Foresti, C. Mahonen, and C.S. Regazzoni, Multimedia Video-Based Surveillance Systems, Kluwer Academic Publishers,2000.

5. Andrews, Gregory R. (2000), Foundations of Multithreaded, Parallel, and Distributed Programming, Addison–Wesley, ISBN 0-201-357526.

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990),

6. M. Bramberger, B. Rinner, and H. Schwabach, ―A Method for Dynamic Allocation of Tasks in Clusters of Embedded Smart Cameras,‖ Proc.

Int’l Conf. Systems, Man and Cybernetics, IEEE Press, 2005, pp. 2595-2600.

4. R. Steinmetz and K. Nahrstedt, Multimedia Systems, Springer, 2004.

7. A. Maier, B. Rinner, and H. Schwabach, ―A Hierarchical Approach for Energy-Aware Distributed Embedded Intelligent Video Surveillance,‖

Proc. IEEE/IFIP Int’l Workshop Parallel and Distributed Embedded Systems, IEEE Press, 2005, pp. 12-16.

8. J. Shi and C. Tomasi, ―Good Features to Track,‖ Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, IEEE Press, 1994, pp. 593-600.

9. Elmasri, Ramez; Navathe, Shamkant B. (2000), Fundamentals of Database Systems (3rd ed.), Addison–Wesley, ISBN 0-201-54263-3.

10. Lynch, Nancy A. (1996), Distributed Algorithms, Morgan Kaufmann, ISBN 1-55860-348-4.

https://en.wikipedia.org/wiki/Sanjeev_Arora
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Addison%E2%80%93Wesley
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-35752-6
https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Shamkant_Navathe
https://en.wikipedia.org/wiki/Addison%E2%80%93Wesley
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-54263-3
https://en.wikipedia.org/wiki/Nancy_Lynch
https://en.wikipedia.org/wiki/Morgan_Kaufmann_Publishers
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-55860-348-4

